Оборудование для сжиженных углеводородных газов

СПРАВОЧНИК

Авторы-составители: С. В. Зубков, Е. А. Карякин

> Под редакцией Е. А. Карякина

Научно-исследовательский центр промышленного газового оборудования «Газовик»

Саратов 2015 K21 ББК 38.763

Ответственные за качество: Е. А. Карякин (руководитель коллектива), С. В. Зубков, И. Ю. Кривошеев, Н. М. Мусатова, О. В. Петрунина

Переводчики: И. А. Евдокимова, С. В. Зубков, Е. А. Карякин, Н. М. Мусатова Корректор: Н. М. Мусатова Фото на обложке: Е. А. Карякин Фото на форзацах: С. Г. Богомолов, Е. А. Карякин

Иностранные консультанты: Flavio Gaianigo (Italy), Sean Guichon (USA), Wolfgang Driftmeier (Germany), Flemming Ethelfeld (Denmark), Tom Lundquist (Denmark)

Редакционная коллегия: С. Б. Нечаев, Р. Г. Попелнуха, С. В. Соколов, А. А. Трофимов, И. В. Шурыгин

Настоящий Справочник является объектом охраны в соответствии с международным и российским законодательством об авторском праве. При перепечатке данных из Справочника ссылка на источник обязательна. Любое несанкционированное использование Справочника или его отдельных частей, включая копирование, тиражирование и распространение, влечет применение к виновному лицу гражданско-правовой, а также уголовной ответственности в соответствии со статьей 146 УК РФ и административной ответственности в соответствии со статьей 150.4 КоАП РФ.

K21 Оборудование для сжиженных углеводородных газов: справочник — Саратов: Газовик, 2015. – 736 с.

ISBN 978-5-9758-1552-1

Книга предназначена для технических работников, имеющих отношение к оборудованию для сжиженных углеводородных газов (проектировщиков, монтажников, работников эксплуатирующих организаций, инженеров ОМТС).

В книге дано описание более 2000 образцов различных приборов и оборудования, применяемых в системах для сжиженных углеводородных газов: клапанов различного назначения (клапанов и мультиклапанов баллонных, запорных, наполнительных, сливных, обратных, предохранительных внешних и внутренних, выравнивания давления, скоростных, многофункциональных, донных, байпасных, быстродействующих для наконечников шлангов), регуляторов давления газа, насосов, насосных и насосно-счетных установок, компрессоров и компрессорных установок, испарителей и испарительных установок, смесительных и испарительно-смесительных систем, технологических систем, оборудования для ГНС и АГЗС, устройств и систем учета.

Справочник снабжен иллюстрированным содержанием для ускоренного поиска. Приведено 692 фотографии, 720 схем и чертежей.

ISBN 978-5-9758-1552-1

ББК 38.763

Представляем читателям новую книгу, включающую в себя описание лучших образцов оборудования для СУГ, производимых в России и за рубежом. Так получилось, что для этого рынка до настоящего времени не издавалось справочников подобного рода. Мы взялись за эту работу — составление, публикацию и распространение настоящего справочного издания, чтобы:

- повысить уровень грамотности всех, имеющих отношение к оборудованию для сжиженных углеводородных газов (проектировщиков, монтажников, технических работников), на территории России;
- уменьшить вероятность возникновения аварий и инцидентов на объектах СУГ как ожидаемое следствие повышения грамотности людей, проектирующих, монтирующих и эксплуатирующих эти объекты;
- способствовать решению проблемы нехватки справочной и учебной литературы по оборудованию для СУГ.

Неоценимую пользу при подготовке данного издания нам оказали наши потребители — покупатели оборудования для СУГ. Именно ежедневное общение с десятками заказчиков позволяет «Газовику» лучше понимать потребности наших клиентов и реальные возможности производителей.

Благодаря этому наши знания об оборудовании не являются академическими, оторванными от действительности — это живые, практические знания, знания ситуации «онлайн», которые каждый день меняются вместе с рынком. Мы рады, что имеем возможность делиться этими знаниями с Вами.

Надеемся, что Справочник будет востребован и найдет свою читательскую аудиторию.

Евгений Александрович Карякин

СОДЕРЖАНИЕ

Предисловие	6
Введение	15
Резервуары для хранения СУГ	
Требования к проектированию	18
1. Клапаны	
Общие данные и классификация	
Клапаны и мультиклапаны баллонные	
Запорные	
Наполнительные и сливные	
Обратные	
Предохранительные внешние	
Предохранительные внутренние	
Выравнивания давления	
Многофункциональные	
Донные	
Байпасные	
Быстродействующие для наконечников шлангов	
2. Регуляторы давления (РД) газа	
Назначение, устройство, классификация	1/11
Двухступенчатые системы регулирования	
Краткие характеристики групп регуляторов	
РД баллонные	
Групповые баллонные установки	
РД первой ступени	
РД второй ступени	191
РД двухступенчатые	
Промышленные РД	224
3. Насосы, насосные и насосно-счетные установки	
Основные характеристики насосов	248
Расчет потребляемой мощности насоса	250
Насосы центробежные	
Насосы шиберные	
Насосы вихревые	
Насосы погружные	
Установки самовсасывающие	
Установки насосно-счетные	349
4. Компрессоры и компрессорные установки	
Перевалка СУГ с помощью компрессоров	
Перекачка паровой фазы и «выдавливание» жидкой фазы	
Отбор остаточных паров (рекуперация)	
Подбор компрессоров	
Агрегатирование и монтаж компрессоров	
Компрессоры и компрессорные агрегаты, выпускаемые промышленностью	355
5. Испарители и испарительные установки	
Общие положения	
Испарители электрические «сухого» типа	
Испарители жидкостные	
Испарители с промежуточным теплоносителем	
Испарители прямого горения	
Установки испарительные прямого горения	
Установки испарительные электрические	
Установки испарительные жидкостные	438
6. Смесительные системы	
Сложности российской терминологии	
Мировой опыт использования SNG	
Перспективы использования SNG в России	453

Пример компенсации пиковых нагрузок с помощью SNG	455
Мобильные генераторы SNG	455
Системы для производства SNG низкого давления	456
Системы SNG низкого давления с использованием клапана Consta-Mix	459
Системы для производства SNG высокого давления	460
Выбор между системой низкого и высокого давления	464
Смесительные установки, выпускаемые ООО «Газ-Сервис», Россия	466
Смесительные установки, выпускаемые иностранными производителями	479
7. Технологические системы	
Общие положения	484
ТС с подземными одностенными резервуарами	_
ТС с подземными двустенными резервуарами	
ТС с наземными одностенными резервуарами	
ТС с наземными двустенными резервуарами	
8. Оборудование для ГНС и АГЗС	E01
Историческая справка и общие положения	
Технологический процесс обработки баллона на ГНС	
Струбцины и заправочные головки	
г идравлические системы автоматического наполнения Системы и посты наполнения баллонов	
Оборудование для ГНС производства фирмы FAS, Германия	
Оборудование для ГНС производства РУП «Белгазтехника» и ООО «Геккон», РБ	
Оборудование для ГНС производства фирмы Kosan Crisplant, Дания	560
9. Средства учета	
Общие положения	
Средства учета	
Средства измерения	
Индикатор уровня наполнения бытовых баллонов	
Счетчики газа бытовые и коммунально-бытовые	
Счетчики газа промышленные	
Массовые расходомеры	
Уровнемеры ротационные	
Уровнемеры поплавковые	
Уровнемеры микроволновые	
Системы учета измерительные автоматизированные	670
10. Приложения	
Единицы физических величин, состав и характеристики газов	
Классификация разъемных резьбовых присоединений	
Иллюстрированное содержание для ускоренного поиска	720
Информационные материалы, включенные в приложения	734

НИЦ ПГО «Газовик» сообщает, что информация для Справочника тщательно отбиралась и проверялась. Однако мы не можем гарантировать соответствия данных, предоставленных нам производителями оборудования либо полученных из открытых источников и опубликованных нами в настоящем Справочнике, данным, фактически полученным при реальной работе этого оборудования в конкретных условиях. Мы уведомляем о том, что приведенная в Справочнике информация об оборудовании и приборах в любой момент может по каким-либо не зависящим от нас причинам устареть и потерять свою актуальность. Ни при каких обстоятельствах НИЦ ПГО «Газовик» не несет ответственности за какой-то особый, случайный, прямой или косвенный ущерб или убыток, включая упущенную выгоду, возникшие в результате использования информации из настоящего Справочника.

Предисловие

Чуть больше двух лет назад нам довелось посетить 25 World LP Gas Forum в Индонезии — и мы были удивлены полному отсутствию русскоговорящих посетителей. Кроме нас с коллегой, из России больше не было никого. То же самое явление потом регулярно повторялось на всех мировых конференциях и выставках по сжиженным газам, где нам приходилось бывать; две недели назад на 27 World LP Gas Forum в Майами была аналогичная ситуация.

Ну не любят наши соотечественники ездить по конференциям, что уж тут удивительного? Тем более в наш информационный век наверняка вся необходимая информация легко доступна в сети Интернет. Зачем деньги и время понапрасну тратить... Сфера профессиональных интересов нашего Научно-исследовательского центра в тот период была в основном сконцентрирована в области оборудования для природного газа.

Однако поскольку любопытство к ведущим мировым производителям оборудования для СУГ начало потихоньку просыпаться, а с рядом зарубежных компаний из этой сферы нам повезло установить прямые контакты, было решено включить в 6 издание (2013) Справочника промышленного газового оборудования главы «Оборудование для СУГ» и «Смесительные установки для создания синтетического природного газа (SNG)».

И вот при работе над материалами к этим главам мы были удивлены весьма и весьма сильно. Кратко резюмировать можно следующим образом: на русско-язычном информационном пространстве в сети Интернет ведущие мировые производители оборудования либо не были представлены вообще, либо представлены так, что хоть как-то полагаться на размещенную информацию не представлялось возможным. Главы 11 и 12 благополучно вошли в 6 издание СПГО, тем не менее их оказалось явно недостаточно для качественного знакомства с предметом изучения.

Таким образом возникла идея популяризации в родном отечестве лучших зарубежных образцов оборудования для СУГ, распространение знаний о смесительных системах для получения SNG... Любой советский учебник по газоснабжению открываешь — в нем обязательно описаны такие системы, какие задачи они решают, для чего нужны... А на практике в России никто смесительных систем живьем-то и не видел.

Для более близкого знакомства с новой темой нам пришлось изучать мировой опыт, особенно лучшие практики проектирования и производства. В одной из первых зарубежных командировок в Сиэтл, США, мы познакомились с разработками наших американских коллег из компании Algas-SDI. И, удивительное дело, новое для России оборудование оказалось востребованным. Первый же контракт «Газовика» оказался знаковым — поставка линии резервного питания факела Олимпийского огня на Олимпиаде 2014 года в Сочи!

Конечно, интегрировать зарубежные разработки в отечественные проектные решения не так просто. Предварительно должна быть проделана большая работа. Она связана как с проведением сертификации оборудования, так и с переводом технических документов, их адаптацией для российских потребителей. Эта работа сегодня успешно ведется как самими производителями, так и нашей компанией, целый ряд отечественных разработок по этой теме был освоен на производственной базе завода «Газ-Сервис» в Саратове. С учетом политики импортозамещения, которую с недавних пор проводит правительство России, эти изделия и разработки могут быть особенно востребованными.

Создание настоящего справочника и адаптация документации по оборудованию для технических специалистов — это взаимосвязанные процессы, которые приведут к популяризации лучших образцов доступного оборудования для СУГ зарубежного и отечественного производства. Мы надеемся, что эта книга расширит горизонты российских специалистов, связанных с проектированием и эксплуатацией, и будет надежным помощником в их нелегкой работе.

С уважением, Е. А. Карякин

11 ноября 2014 года ОАЭ, Абу-Даби ADIPEC 2014

ГК «Газовик» состоит в российских и международных отраслевых ассоциациях. В настоящее время в WLPGA и NPGA мы являемся единственными российскими представителями. ГК «Газовик» является официальным партнером:

ГК «Газовик» считает своей главной стратегической задачей на рынке оборудования для СУГ распространение, омологацию*, адаптацию и популяризацию в России лучших мировых технологий и оборудования. Наши бренды:

^{*}Омологация — усовершенствование объекта, улучшение технических характеристик с целью соответствия товара каким-либо стандартам или требованиям.

Ассоциация «Сибдальвостокгаз»

Ассоциация «Сибдальвостокгаз» образована в 1995 году газораспределительными организациями Сибири и Дальнего Востока. Основной задачей Ассоциации является объединение усилий и координация действий по решению общих проблем в отрасли газораспределения, обобщение и распространение передового опыта, дальнейшее развитие газификации регионов Сибири и Дальнего Востока, совершенствование законодательства и нормативных актов, представление и защита интересов членов Ассоциации в государственных органах на региональном и федеральном уровне, а также в иных организациях.

Ассоциация активно сотрудничает с федеральными и региональными органами государственной власти, министерствами и ведомствами, различными коммерческими и некоммерческими организациями, является членом НП «Российское газовое общество» и одним из учредителей «Общероссийского объединения работодателей работников нефтяной и газовой промышленности».

В настоящее время Ассоциация объединяет более 50 организаций. Это не только газораспределительные компании, но и организации по проектированию и строительству систем газоснабжения, производству газового оборудования, экспертные компании, научные и учебные заведения регионов Сибири, Дальнего Востока и Центральной России. Ассоциацией ежеквартально издается журнал «Факел».

Подробную информацию о деятельности Ассоциации Вы можете получить на сайте: www.sibgazovik.ru.

World LP Gas Association

Мировая ассоциация сжиженного углеводородного газа является общественной организацией, объединяющей более 200 членов — ведущих игроков отрасли из более чем 125 стран. Членами WLPGA являются отраслевые общественные организации из разных стран (как NPGA в США), производители СУГ и оборудования, газораспределительные организации.

Основной целью ассоциации является увеличение ценности отрасли путем увеличения спроса на СУГ, а также стимулирования соблюдения добросовестной деловой практики и техники безопасности. WLPGA сводит частные и государственные компании, которые заняты в одной, нескольких или всех видах деятельности отрасли; разрабатывает долгосрочные партнерские отношения с международными организациями; реализует проекты в местных и глобальных масштабах.

ГК «Газовик» является в настоящее время единственным членом WLPGA, представляющим Россию.

WLPGA занимается продвижением использования СУГ для того, чтобы прийти к более чистому, здоровому и процветающему миру.

Миссия WLPGA:

- демонстрировать пользу СУГ, информировать, обучать и влиять на все заинтересованные стороны;
 - поддерживать развитие рынка СУГ;
- поощрять соответствие стандартам, добросовестную деловую практику и соблюдение техники безопасности;
 - выявлять инновации и способствовать передаче знаний.

WLPGA предоставляет платформу для обмена информацией, регулярно организуя интерактивные встречи и семинары для технических специалистов и ключевых заинтересованных лиц среди своих членов. Члены WLPGA получают регулярные обновления, уведомления, информационные бюллетени и отчеты с информацией о действиях WLPGA, ее достижениях, проектах, международных событиях.

WLPGA составляет отчеты и исследования, есть закрытые отчеты, доступные только ее членам. Темы определяются членами и охватывают широкий спектр интересов. Эти публикации членам WLPGA предоставляются бесплатно. Мировой Статистический Обзор WLPGA составляется с учетом консультаций по всей отрасли и включает информацию о производстве и потреблении СУГ для более чем 80 стран.

http://www.worldlpgas.com

Кто может вступить в WLPGA?

В WLPGA может вступить любая организация. Есть несколько категорий членства, доступных для заинтересованных организаций.

Какова стоимость вступления?

Вступительные взносы отсутствуют, а стоимость годовой подписки различается в зависимости от категории членства.

Насколько влиятельной является WLPGA?

Как глобальный лоббист отрасли СУГ WLPGA имеет значительное влияние. В 1989 году Экономическим и Социальным Советом Организации Объединенных Наций ей был официально присвоен Специальный консультативный статус (UN ECOSOC). Она развила партнерские отношения с другими международными организациями, такими как Всемирный банк, Азиатский банк развития (ADB) и Международное энергетическое агентство (IEA). Вместе с национальными и региональными ассоциациями СУГ и организациями-членами, WLPGA решает главные проблемы с ключевыми заинтересованными сторонами, лицами, определяющими государственную политику в рамках правительств и внутригосударственными органами.

Ежегодный World LP Gas Forum стал самым важным событием в календаре для индустрии СУГ, привлекая сотни экспонентов и сотни делегаций каждый год. Публикации, такие как ежегодный Мировой Статистический Отчет WLPGA и «Руководящие принципы ведения добросовестной деловой практики и соблюдения техники безопасности WLPGA» являются глобальными ориентирами отрасли.

Рабочие группы WLPGA

Глобальная сеть автогазовой промышленности GAIN (Global Autogas Industry Network) управляется старшими должностными лицами отрасли со всего мира. GAIN собирается несколько раз в год для обмена ключевой информацией о трендах, рынке, инновациях и т.д.

Глобальная сеть технологий GLOTEC (Global Technology Network) координирует проекты с 2009 года, поддерживая рост отрасли путем обмена и распространения информации о новых технологиях и их возможностях.

Глобальная баллонная сеть GCN (Global Cylinder Network) присоединяется к другим группам WLPGA и рассматривает происходящие глобальные процессы через призму бизнеса, связанного с баллонами для СУГ.

Рабочая группа изменения климата CCWG (Climate Change Working Group) занимается освещением достижений отрасли, связанных с проблемами изменения глобального климата в рамках Киотского протокола.

The National Propane Gas Association

NPGA — национальная общественная организация, представляющая интересы индустрии СУГ в США, объединяющая более чем 3200 компаний во всех 50 штатах США, 38 дочерних государственных и региональных ассоциаций и членов из 19 зарубежных государств. NPGA представляет все сегменты индустрии СУГ в США: членами являются малые предприятия и крупные корпорации, занимающиеся оптовой и розничной торговлей СУГ; производители и оптовые торговцы оборудованием; производители баллонов и резервуаров для пропана и транспортные компании, занимающиеся транспортировкой СУГ.

NPGA первоначально была основана в 1931 году как Национальная Ассоциация Баллонного Газа (National Bottled Gas Association), существующее название National Propane Gas Association было утверждено членами в апреле 1988 года. В 2002 NPGA перенесла свой главный офис из города Лиль, штат Иллинойс, в Вашингтон, округ Колумбия, где она имела небольшой офис по делам правительства с 1962.

ГК «Газовик» является в настоящее время единственным членом NPGA, представляющим Россию.

Миссия NPGA

Повышение безопасности и увеличение использования пропана через государственную политику.

Стратегические цели:

- повышение безопасности в отрасли;
- достижение такой государственной политики, которая способствует производству, распространению и увеличению спроса на пропан;
- воспитание общеотраслевой сплоченности с помощью общения, изучения, использования сети и через сотрудничество.

4 категории членства в NPGA

1. Продавцы, занимающиеся розничной торговлей

Есть два типа продавцов:

- локальные: в основном находятся в одном штате;
- федеральные: 15+ мест розничной торговли с 7+ местами розничной торговли за пределами штата, где находится главный офис.

2. Поставщики, предлагающие товары и услуги продавцам

Подразделяются на 12 категорий:

— производители устройств. Занимаются производством, сборкой и реализацией устройств, предназначенных для потребления СУГ, включая производителей и сборщиков компонентов, которые становятся частями устройств;

- установщики карбюраторов. Занимаются установкой карбюраторного оборудования СУГ на автомобили;
- поставщики компьютеров/технологий (членство в секции услуг). Занимаются производством или распространением компьютеров и компьютерных технологий;
- производители емкостей. Занимаются производством, сборкой и реализацией емкостей для СУГ (резервуаров или баллонов);
- производители оборудования. Занимаются производством, сборкой и реализацией оборудования, включая производителей и сборщиков компонентов, которые становятся частями такого оборудования;
- страховщики и страховые компании или агентства (членство в секции услуг). Предоставляют страховую защиту индустрии СУГ;
- представители производителей. Независимые представители оптовых продаж одного или нескольких производителей, описанных выше. К этой группе относятся те, кто не хранит такую продукцию, как и не выставляет счета при ее продаже;
- другие (членство в секции услуг). Предоставляют товары и услуги индустрии СУГ;
- производящие/непроизводящие брокеры/оптовики. Занимаются производством или оптовыми продажами СУГ;
- транспортировщики и/или перевальщики СУГ. Занимаются перевозками СУГ по найму с тарифами, установленными государственными или федеральными органами регулирования или занимающиеся оптовым хранением СУГ;
- изготовители автомобилей. Занимаются изготовлением автомобилей, используемых для доставки СУГ и емкостей для СУГ;
- оптовые дистрибьюторы устройств, емкостей, оборудования. Занимаются оптовой реализацией устройств, оборудования и емкостей СУГ.

Примечание. По конституции и нормам NPGA адвокаты, юридические фирмы и консультанты, которые предоставляют заключения эксперта, не имеют права вступать в NPGA.

3. Международные члены

Производящие и непроизводящие компании, расположенные за пределами Соединенных Штатов и американские компании, занимающиеся исключительно международной коммерцией, которые не ведут бизнес с кемлибо из заказчиков или компаний из США (все международные компании, ведущие бизнес в США, должны пользоваться категорией «Поставщики»).

4. Индивидуальные члены

Любые люди, работающие на любую активную компанию, являющуюся членом Ассоциации или на квалифицированного бывшего члена NPGA.

Стоимость членских взносов различается в зависимости от категории и выручки.

Газовик-Химмаш. Резервуары и оборудование для сжиженных углеводородных газов

Предлагаем поставку емкостей под СУГ объемом 5, 10, 20, 25, 50, 75, 100, 200 м³, а также любых нестандартных объемов с доставкой в любую точку России и ближнего зарубежья.

Мы занимаемся инжиниринговыми услугами: проектированием, монтажом, пусконаладочными работами на объектах СУГ, в том числе систем автономного газоснабжения, резервуарных установок газоснабжения, ГНС, АГЗС, а также комплексной комплектацией этих объектов.

Наш телефон: 8 (8452) 740-380 Бесплатная телефонная линия: 8 (800) 2000-358

Введение

Сжиженные углеводородные газы (СУГ) — смесь сжиженных пропана и бутана в различных пропорциях (ГОСТ 20448-90), иногда содержащая незначительную часть ШФЛУ (широкие фракции легких углеводородов, «конденсат»). Кроме этого, существуют близкие по значению термины СПБ (сжиженный пропан-бутан) и СНГ (сжиженные нефтяные газы). Все эти термины идентичны широко применяемому в России английскому сокращению LPG (Liquefied Petroleum Gas — сжиженный нефтяной газ).

К преимуществам СУГ можно отнести возможность перевозить и хранить их как жидкости, возможность регулировать и сжигать паровую фазу как природный газ, возможность использования в качестве топлива в местах, удаленных от сетей природного газа. По сравнению с природным газом СУГ являются более калорийным топливом, теплота сгорания одного кубометра паровой фазы СУГ в 2,5-3,5 раза выше теплоты сгорания одного кубометра природного газа.

К недостаткам СУГ можно отнести сложность обеспечения бесперебойной поставки (высокую зависимость от автомобильного транспорта), больший объем инвестиций (по сравнению с газификацией природным газом) в объекты газификации, потенциальную пожаро- и взрывоопасность, возможность несчастных случаев и человеческих жертв в случае аварий и инциден-

тов. Кроме этого, сегодня стоимость самого СУГ в качестве топлива также превышает стоимость природного газа.

СУГ в качестве основного топлива используется для бытовых нужд, в энергетике, автотранспорте, для технологических нужд в промышленности. Автономное газоснабжение осуществляется от резервуарных установок с естественным и искусственным испарением и от баллонных установок (индивидуальных и групповых), выбор которых определяется требуемым расходом паровой фазы СУГ и, соответственно, испарительной способностью установок. Всего в России находятся в эксплуатации около 20 тыс. резервуарных и групповых баллонных установок.

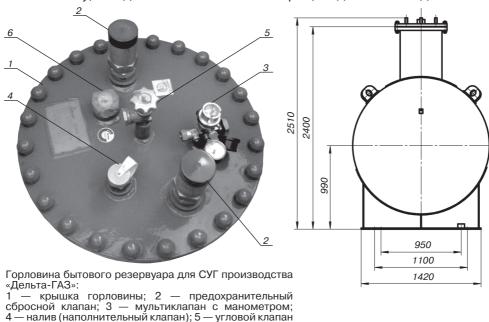
Погрузка наземной емкости для СУГ V-10 м³ производства «Газовик-Химмаш»

Резервуары для хранения СУГ

Для хранения СУГ используются резервуары, иногда называемые газгольдерами, которые можно классифицировать на наземные и подземные, одностенные и двустенные. Сегодня в России резервуары под СУГ выпускаются множеством производителей, кроме этого большое количество маленьких резервуаров (объемом до 5 м³) импортируется из Польши, Чехии, других стран. Как правило, их отличает более высокое качество и существенно меньшая толщина стенки. Российские производители («Кузполимермаш», «Газовик-Химмаш», «Алексеевка-Химмаш», «Зенит-Химмаш» и другие) также выпускают резервуары различного объема: в зависимости от технического задания — от 2 до 200 м³.

Резервуары свыше 25 м³ являются негабаритным грузом, возможно очень тяжелым, поэтому необходимо уделять особое внимание технологии транспортировки груза от изготовителя до места установки. Необходимо иметь в виду, что иногда стоимость транспортировки резервуара от заводской площадки до места монтажа превышает стоимость самой емкости. Подземные резервуары покрываются битумно-полимерным или эпоксидным покрытием, которое может быть повреждено при транспортировке или при погрузочно-разгрузочных работах, поэтому при получении резервуаров у производителя желательно предусмотреть ремкомплект для устранения возможных повреждений.

Резервуары изготавливаются с одной или двумя горловинами в зависимости от количества установленного на них оборудования. Как правило, каждый резервуар объемом свыше 5 м³ является индивидуальным изделием. На горловины устанавливаются редукционные головки с вваренными в них патрубками для слива/налива продукта и дренажа (слива конденсата). Кроме этого, на редукционных головках в обязательном порядке устанавливается предохранительный сбросной клапан и уровнемер либо контрольная трубка, низ которой соответствует наполнению резервуара на 85%. И сейчас еще сохранилось множество емкостей под СУГ, в которых вместо уровнемера установлено несколько контрольных трубок — к примеру, 25%, 50% и 85%.



Габаритный груз: погрузка подземной емкости для СУГ V-25 м³ производства «Газовик-Химмаш»

При заполнении емкости продуктом он начинает переливаться из контрольных трубок, сигнализируя о заполнении емкости газом до определенного объема. Способ крайне примитивный, но достаточно надежный. Часто устанавливается мультиклапан, совмещающий в себе несколько функций, к примеру манометр, выход паровой фазы и контрольную трубку (85%). Вся используемая на (до испарителя) резервуаре

запорная арматура должна быть рассчитана на давление 2,5 МПа и иметь температурный режим работы минимум до -40 °C.

Групповые подземные установки состоят обычно из нескольких резервуаров, обвязанных трубопроводами по жидкой и паровой фазам и являющихся сообщающимися сосудами. Количество головок на подземных установках различно и зависит от проектного решения: иногда каждый резервуар имеет свою головку, иногда емкости обвязаны попарно, когда ставится одна головка

4 — налив (наполнительный клапан); 5 — угловой клапан к дренажной трубке для отбора жидкой фазы; 6 — механический уровнемер

> Максимальный уровень заполнения топливом 85% Ø500x10 21600 10 13 300 6000 1650 9300 10200

> Эскиз емкости под СУГ V-20 м³ производства «Газовик-Химмаш»: 11 — крышка горловины; 12 — сферическое днище; 13 — обечайка; 14 — опора; 15 — строповочное кольцо

на два резервуара, иногда одна головка ставится на большее количество резервуаров (3, 4).

Объекты, на которых используется оборудования для СУГ, можно условно разделить на три основные группы:

- газонаполнительные станции (ГНС) и газонаполнительные пункты (ГНП), которые обычно состоят из большого резервуарного парка, насосно-компрессорного отделения, а также отделения наполнения бытовых газовых баллонов. Оборудование для ГНС описано в главе 8 на стр. 521;
- автомобильные газозаправочные станции (АГЗС), в состав которых обычно входят емкость, насосный модуль, запорная арматура, топливораздаточная колонка (ТРК). Оборудование для АГЗС описано в главе 7 на стр. 484;
- системы автономного газоснабжения, в состав которых обычно входят емкость, испаритель, запорная арматура, регуляторы давления паровой фазы СУГ. Так как резервуары под СУГ объемом до 5 м³, принадлежащие частным домовладельцам, не поднадзорны Ростехнадзору, а одной заправки СУГ емкости 5 м³ обычно хватает на отопление и горячее водоснабжение частного дома (коттеджа) площадью 120–140 м³ примерно на один год, вполне объяснимо увеличение объема рынка емкостей объемом до 5 м³ и сопутствующего оборудования для частных заказчиков.

В последние годы наблюдается значительное увеличение потребления СУГ при использовании его в качестве резервного топлива при газоснабжении котельных, промышленных предприятий, использующих СУГ на технологические нужды, при газоснабжении индивидуальных жилых домов, домов отдыха, в тех районах страны, где в ближайшие 10–15 лет не ожидается газификация природным газом. Отличные теплотехнические и экологические характеристики СУГ, возможность создания автономных баз хранения значительных запасов топлива способствуют дальнейшему развитию этого направления. Развитие рынка СУГ привело к увеличению спроса на оборудование, предназначенное для газоснабжения потребителей СУГ: резервуары, испарители, насосы, запорная и предохранительная арматура.

Требования к проектированию

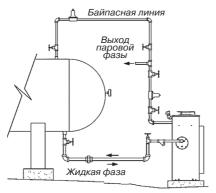
При проектировании и эксплуатации объектов СУГ надлежит руководствоваться СП 62.13330.2011 «Газораспределительные системы» (актуализированная редакция СНиП 42-01-2002), ПБ 12-609-03 «Правила безопасности для объектов, использующих сжиженные углеводородные газы», ПБ 10-115-96 «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением». Как правило, следует предусматривать резервуары, трубопроводы жидкой и паровой фаз, запорную арматуру, предохранительные запорные клапаны (ПЗК), регуляторы давления газа, предохранительные сбросные клапаны (ПСК), контрольно-измерительные приборы (КИП). При необходимости в составе резервуарной установки следует предусматривать испарительные установки. В составе групповой баллонной установки следует предусматривать баллоны для СУГ, запорную арматуру, регулятор давления газа, ПЗК, ПСК, манометр.

Конструкция предохранительных запорных клапанов и запорной арматуры должна соответствовать требованиям государственных стандартов, обеспечивать герметичность не ниже класса «A» при PN 25, t_{pa6} от -40 до +45 °C.

Необходимо предусматривать сбор образующегося в трубопроводах конденсата с помощью конденсатосборников. При установке резервуаров следует предусматривать уклон не менее 2% в сторону сборника конденсата, воды и неиспарившихся остатков. Сборник конденсата не должен иметь выступов над нижней образующей резервуара, препятствующих сбору и его удалению, а также неиспарившихся остатков. Уклон газопроводов следует предусматривать для наружных газопроводов не менее 5% в сторону конденсатосборников. Вместимость конденсатосборников — не менее 4 л на 1 м³ расчетного часового расхода газа.

Для надземной установки могут предусматриваться как стационарные, так и транспортабельные (съемные) резервуары СУГ. Рабочее давление СУГ после регуляторов не должно превышать проектного. Установку ПСК следует предусматривать на каждом резервуаре, а при объединении резервуаров в группы (по жидкой и паровой фазам) — на одном из резервуаров каждой группы. Пропускная способность ПСК определяется расчетом.

В проектах следует предусматривать, как правило, подземную прокладку газопроводов. Наземная и надземная прокладка газопроводов допускается при соответствующем обосновании, а также на территории ГНС, ГНП, АГЗС. Заглубление подземных газопроводов паровой фазы СУГ низкого давления от резервуарных (с искусственным испарением) и групповых баллонных установок следует предусматривать не менее уровня промерзания грунта, с целью исключения конденсации паров газа.


Существуют два основных вида обвязки испарителей: стандартная (когда после испарения паровая фаза напрямую доставляется потребителю) и «фид бэк» (когда паровая фаза поступает в верхнюю часть резервуара, а отбор ее идет из другой точки емкости). Необходимо понимать различия данных проектных решений.

Основная опасность стандартной схемы обвязки при надземной прокладке газопровода — реконденсация и возникновение «пробок» в трубопроводе (обратного перехода из паровой фазы в сжиженную). Она возникает в случае сильных отрицательных температур и при маленьких диаметрах трубопровода паровой фазы. Из испарителя выходит газ с температурой порядка 70-75 °C. Если трубопровод имеет значительную протяженность и небольшой диаметр, а на улице стоит сильный мороз, при прохождении по трубопроводу газ охлаждается до температуры, при которой начинается его реконденсация в жидкую фазу. Частично это можно компенсировать увеличением диаметра трубопровода. В случае если прокладка подземного трубопровода невозможна, а длина трассы трубопровода от испарителя до потребителя подразумевает возможность реконденсации, необходимо предусматривать устройство обогрева трубопровода нагревательным электрокабелем и усиленную теплоизоляцию, в случаях большой протяженности возможна дополнительная установка подогревателя газа в нижней точке трубопровода.

В случае обвязки «фид бэк» паровая фаза СУГ поступает после испарителя обратно в резервуар, немного повышая давление в нем. Таким образом, при обвязке «фид бэк» КПД испарителя несколько меньше, чем при стандартной схеме, поскольку часть энергии тратится на поднятие давления в резервуаре. При этом поступающая из испарителя паровая фаза СУГ смешивается с находящейся в резервуаре и остывает до температуры, близкой к температуре окружающей среды. Более длинные молекулы ШФЛУ, незначительно присутствующие в СУГ, конденсируются на стенках резервуара, который играет роль сепаратора-фазоразделителя. Отбор паровой фазы СУГ производится из другой точки резервуара, и, поскольку газ в резервуаре охладился до температуры окружающей среды, его температура при прохождении через трубопровод не изменяется, конденсации в трубопроводе не происходит.

Другим последствием обвязки резервуара методом «фид бэк» является накопление со временем в резервуаре тяжелых фракций ШФЛУ (конденсата). Применяемая за рубежом (в частности в Италии) практика помещения теплообменника испарителя непосредственно в нижнюю часть резервуара, решающая эту проблему путем прямой возгонки тяжелых фракций ШФЛУ, в России распространения не получила.

Технология «фид бэк» позволяет поддерживать уровень расхода газа у потребителя независимо от уровня СУГ в резервуаре (рис. 3). Происходит это вследствие подключения к резервуару испарителя, который затем возвращает уже паровую фракцию СУГ обратно в резервуар. Таким образом, в случае падения давления в резервуаре ниже установленного предела, жидкая фаза СУГ начинает поступать в испаритель, который увеличивает давление внутри резервуара, тем самым обеспечивая бесперебойное газоснабжение потребителя (вплоть до полного опорожнения резервуара). Управление подачи газа в испаритель осуществляет контрольный клапан (рис. 4). При понижении давления в резервуаре, которое подается на контрольный вход 6, пружина 1 перемещает затвор 2. При этом со входа СУГ 3 сжиженный газ через встроенный термоклапан 4* поступает на выход 5 и далее на вход испарителя (см рис. 3). Дальнейший рост давления приводит к сжатию пружины 1, вследствие чего достигается равновесное состояние системы.

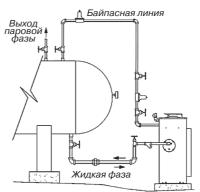


Рис. 2. Обвязка резервуара «фид бэк»

^{*}Разрешает подачу газа при выходе испарителя на рабочий режим.

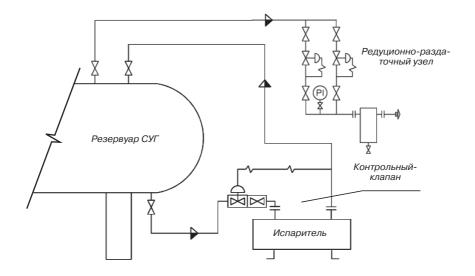


Рис. 3. Структурная схема обвязки резервуара по технологии «фид бэк»

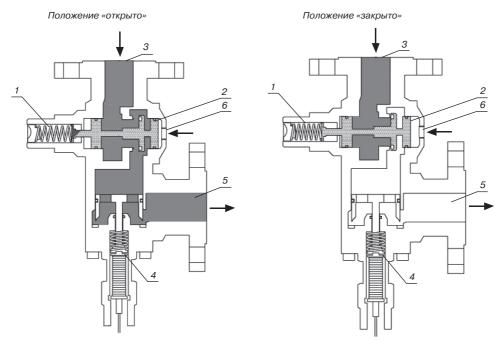


Рис. 4. Контрольный клапан: 1 — пружина; 2 — затвор; 3 — вход СУГ; 4 — встроенный термоклапан; 5 — выход СУГ; 6 — контрольный вход